Welcome

Adjustment of Short Duration Rice Variety in Rice-Based Cropping Pattern and Agro-Techniques to Mitigate Seasonal Food Insecurity (*Monga*) in Northern Districts of Bangladesh.

M.G. Neogi¹, Abul Khair² and S. Samsuzzaman¹

¹RDRS Bangladesh, Jail Road, Rangpur, Bangladesh. ²Department of Botany, Jahangirnagar University, Savar, Dhaka.

This research paper is a part of the Ph.D. program by the 1st Author and presented in the conference on seasonality at IDS Sussex, UK during 8-10 July 2009

Area : 147,570 Km² Population : 140 million (950 persons/Km²) **Title:** Adjustment of Short duration Rice variety in Ricebased Cropping Pattern and Agro techniques to Mitigate Seasonal Food Insecurity (*monga*) in Northern Districts of Bangladesh.

Monga: A local Bengali term '*Monga'* is used to describe seasonal food insecurity due to joblessness of day laborers for a particular period (mid-Sep to mid-Nov) in Northern Bangladesh.

7 different cropping patterns practicing by farmers in northern Bangladesh.

SI #	Jan	Feb	Mar	Apr	Мау	June	Jul	Aug	Sep	Oct	Nov	Dec
		Irrigated	Rice						Monsoon	Rice		
1												•
		Tobacco							Monsoon	Rice		
2												
		Maize							Monsoon	Rice		
3												
	Potato								Monsoon	Rice		
4				Maize								
		Wheat							Monsoon	Rice		
5												
	Potato	W.Veg.			Jute				Monsoon	Rice		
6												
7	Potota				Irrigated	Rice			Monsoon	Rice		
]]				<u> </u>	
Cropping pattern for monga mitigation												
	Potato		Mung						SD. Rice		Potato	

Research Background and Objectives

• In monsoon (June-Aug), farmers are cultivating long duration rice in northern region, which mature 150 to 160 days (mid-Jun to mid-November).

•Farmers and agricultural day-laborers are somehow involved during June to August in monsoon rice field.

• After that, less work is available in agricultural field during mid-September to mid-November until harvesting in December.

•Therefore 68% (3-4 million) agricultural day-laborers of northern region remain unemployed during this period, which eventually causes `*Monga*'.

•When farmers & agricultural day-laborers start to harvesting their rice in late November to December, then monga somehow disappears.

•Therefore a technology regarding alternative rice based cropping pattern needs to be developed, where farmers would be able to harvest rice in mid-Sep. to mid-Nov. and day laborers will get job for harvesting of rice.

• Based on above ground, establish a research on 'short duration ricepotato-mungbean' cropping pattern to mitigate *monga* in order to maximize net profit and ensuring jobs for the day-laborers in *monga* months.

Interaction of BR33 between Variety, Sowing method & Sowing Time

Treatment	No.of penicle/m2	No. filled grain/pen icle	Crop duration (days)	Pest infestati on/m2	Yield in ton /ha	Harvesting Dates	
BR 33 X DSS X 1st June	355 c	84 d	107 h	3.6 ab	3.3 cd	15-Sep	
BR 33 X DSS X .15 June	400.8 b	100 cd	104.2 i	2.8 b	4 ab	27-Sep	
BR 33 X DSS X .30 June	408.6 b	109 bc	100 j	1.2 c	4.1 ab	8-Oct	
BR 33 X TSS X 1st June	251.8 e	114 bc	122.8 e	3.4 ab	3.2 d	30-Sep	
BR 33 X TSS X .15 June	307.8 d	123 abc	120.4 f	2.4 b	3.7 bcd	13-Oct	
BR 33 X TSS X .30 June	317 .6 d	131 ab	118.4 g	1 c	3.8 bc	26-Oct	

Interaction of BR11 between Variety, Sowing method & Sowing Time

Treatment	No.of penicle/ m2	No. filled grain/pe nicle	Crop duration (days)	Pest infestatio n/m2	Yield in ton /ha	Harvesting Dates
BR 11 X DSS X 1st June	395.8 b	108 bcd	130 с	4.2 a	3.5 bcd	8-Oct
BR 11 X DSS X .15 June	464.2 a	123.2 abc	128.6 d	3.2 ab	4.4 a	21-Oct
BR 11 X DSS X .30 June	468.2 a	130.2 ab	128.8 d	2.8 b	4.5 a	5-Nov
BR 11 X TSS X 1st June	406.6 b	129 ab	150 a	3.4 ab	3.9 abc	28-Oct
BR 11 X TSS X .15 June	431.6 ab	146 a	147.4 b	0.8 c	4.2 ab	9-Nov
BR 11 X TSS X .30 June	431.4 ab	142.8 a	147.4 b	0.8 c	4.16 ab	24-Nov

4.5 5.0 4.5 4.0 4.0 3.5 Yield (ton/ha) (ton/ha) 3.5 3.0 -3.0 15 30 **30** Ű 30 -1st 2.5 15 30 St. Ű 2.5 June June June June 2.0 June June June June June Yield 2.0 June 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 **Direct Seeding Transplanting Direct Seeding** Transplanting **Planting method Planting method** 1st June 15-Jun 30-Jun 1st June 15-Jun 30-Jun

BRRI 33 (Short duration)

BR-11(Traditional)

Crop duration of rice varieties under different planting methods in different dates

Conclusion:

The yield of both rice variety (BR11 & BR33) increased yield 7% to 8% under **direct seeding** system. The yield of **direct seeded** rice was higher of 280-302 kg/ha than transplanting system because of higher plant population and thus more grain in a specific area

• The crop duration of both varieties were reduced around 18 days due to direct seeding system, because to escape transplanting shock & injury.

Around 60 day-laborers occupied/hectare of land for harvest and postharvest operations in *monga* months, where none is available for traditional monsoon rice cultivation.

• So to overcome *monga*, farmers can cultivate short duration rice either direct seeding or transplanting, where farmers will get rice and day-laborers will get job to harvest rice in *monga* months.

• After harvesting of short duration rice in *monga* months, it is now possible to cultivate winter crops like potato in right time i.e. in November, while farmers will get more yield and then mungbean cultivation as additional crop, thus more income..

Research in Extension

After research and extending the said technology by RDRS the last four years, in 2008, the **Government of Bangladesh is taking** the lead role to extend the same in 40,000 hectares of lands under GO/NGO collaboration to mitigate monga.

